

Strojírny Brno

Water Turbines & Hydro - Mechanical Equipment

Strojírny Brno Water Turbines & Hydro - Mechanical Equipment

Strojírny Brno company is renowned Czech manufacturer of **Water Turbines** and **Hydro-mechanical Equipment** for reliable and safe operation and control of hydro power plants.

Besides Designing, Manufacturing, Supervision, Testing, Commissioning and Servicing of a new Water Turbines and auxiliary equipment. Rehabilitations, Overhauls and Up-grading of existing hydro power technologies are also an important part of our activities.

Our supply experience reached more than two thousand hydro power projects supplied worldwide ensuring technical improvements and proving our knowhow. Obtained quality certificates and skills of our workers guarantee high quality of installed equipment. All types of Strojirny Brno turbines have been also certified for installations in drinking water treatment plants.

Karel Mikulášek Managing Director

CERTIFICATES

TDS Brno - Sekce řízení jakosti a certifikace, p. s.

U vlečky 29/5, 617 00 Brno
Certifikačio i organ pro systémy managementu č. 3105
akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17021-1:2016

CERTIFICATE

No. TDS 62/2018

The TDS CERT certification body for management systems

confirms

on the basis of a positive result of certification audit No. 213/2018 that the company

> Strojírny Brno, a.s. Blanenská 1278/55 CZ - 664 34 Kuřim

has established and applies an Occupational health and safety management system in accordance with

ČSN OHSAS 18001:2008

in the line of

Production and complete overhauls of water turbines and hydro technical gears and machines building with driving gear.

Company has been certificated since 2012.

Further explanation as to the subject and certificate as well as to applicability of requirements referring to Standard ČSN OHSAS 18001:2008 can be obtained at the indicated organization.

Brno 11, 7, 2018

Ing. Jiří Noss Director of certification bo

TDS Brno - Sekce řízení jakosti a certifikace, p. s.

U vlečky 29/5, 617 00 Brno Certifikační orgán pro systémy managementu č. 3105 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17021-1:2016

CERTIFICATE

No. TDS 103/2017

The TDS CERT

certification body for management systems

confirms

on the basis of a positive result of certification audit No. 24/2017 quality management system and the welding process, that the company

> Strojírny Brno, a.s. Blanenská 1278/55 CZ - 664 34 Kuřim

has established and applies a quality management system in accordance with

ČSN EN ISO 9001:2009

in conjunction with the requirements

ČSN EN ISO 3834-2:2006

in the line of

Production and complete overhauls of water turbines and hydro technical gears and machines building with driving gear.

Further explanation as to the subject and certificate as well as to applicability of requirements referring to Standard EN ISO 9001 and EN ISO 3834-2 can be obtained at the indicated organization.

Brno 31. 7. 2017

Ing. Jiří Noss

The list of activities welding process is given in Appendix of this certificate

CERTIFICATES

TDS Brno - Sekce řízení jakosti a certifikace, p. s.

U vlečky 29/5, 617 00 Brno Certifikační orgán pro systémy managementu č. 3105

akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17021-1:2016

Annex to certificate no. TDS 103/2017

WELDING PROCESS SPECIFICATION

Certificate No.: TDS 103/2017 confirming the introduction and use of a welding process in accordance with the requirements of EN ISO 3834-2 applies to the following specifications:

1. Type of product

water turbines, hydro technical gears, machines with driving gear

2. Product standards

ČSN 73 2603; ČSN EN 1090-2

3. The Group of base material (according to CEN ISO/TR 15608)

Group 1.1, 1.2, 1.4, 8.1

4. Welding and related processes (according to EN ISO 4063)

Svařovací procesy (dle ISO 4063)	Skupiny základních materiálů (dle CEN ISO/TR 15608)
111	1.1, 1.2, 1.4
135	1.1, 1.2, 1.4
141	8.1
311	1.1, 1.2, 1.4

5. Officials welding coordinator (according to EN ISO 14731)

Name	Qualification	Job function and level
Ing. Vladimír Suchý	IWE	Welding supervision; specific requirements according to EN ISO 14731, section 6.2 point a)

This annex is valid with the certificate No.: TDS 103/2017 only and is valid only for the duration of this certificate.

Brno 31, 7, 2017

TDS Brno - Sekce řízení jakosti a certifikace, p. s. U vlečky 29/5, 617 00 Brno

Certification body for management systems no. 3105 accredited by the Czech Accreditation Institute according to ISO/IEC 17021:2011

CERTIFICATE

No. TDS 51/2016

The TDS CERT certification body for management systems

confirms

on the basis of a positive result of recertification audit No. 107/2016 that the company

> Strojírny Brno, a.s. Blanenská 1278/55 CZ - 664 34 Kuřim

has established and applies an environmental management system in accordance with

ČSN EN ISO 14001:2005

in the line of

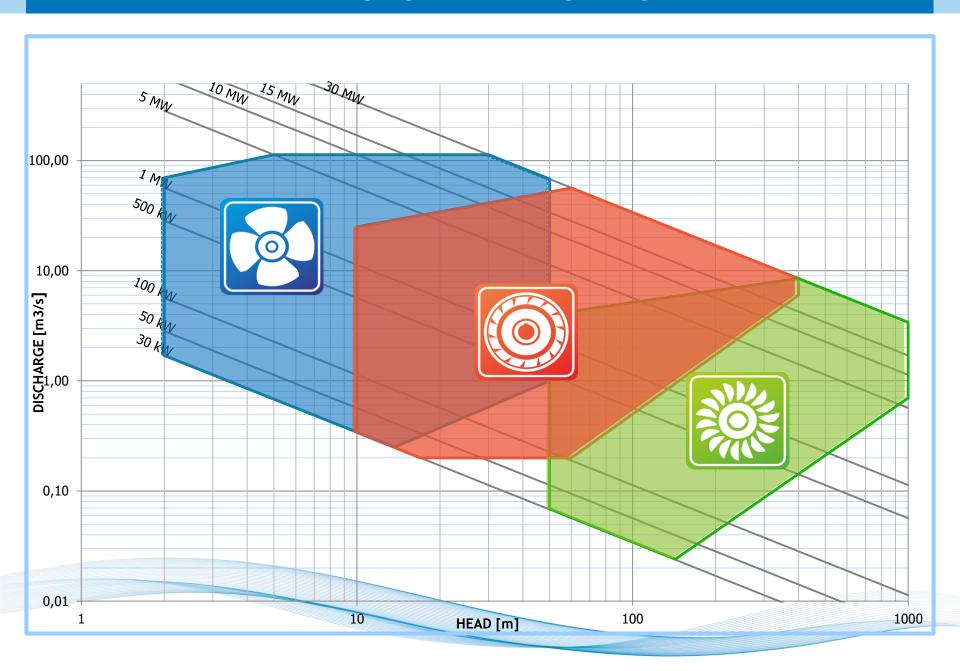
production and complet overhauls of water turbines and hydrotechnical gears and machines building with driving gear.

Company has been certificated since 2007.

Further explanation as to the subject and certificate as well as to applicability of requirements referring to standard EN ISO 14001:2004 can be obtained at the indicated organization.

Brno, 09.08.2016

Strojírny Brno COMPANY PRODUCT PORTFOLIO


•WATER TURBINES

- KAPLAN TURBINES
- PELTON TURBINES
- FRANCIS TURBINES

All turbine types are also certified for installations in potable water systems

- HYDRO-MECHANICAL EQUIPMENT
- REHABILITATIONS, OVERHAULS & UP-GRADING

HYDRO POWER PLANTS RANGE

KAPLAN TURBINES

Horizontal Straight-Flow Kaplan Turbine

is applied for Low Heads and High Discharges. We design our Kaplan Turbines with adjustable Guide Vanes and Runner Blades during operation ensuring optimisation of efficiency at varying head and discharge.

Design Parameters:

Range of Heads:	1 – 20 m
Range of the Runner diameters:	350 – 6 000 mm
Range of power per 1 unit:	50 – 25 000 kW

Kaplan Z – type Turbine

is applied for Low Heads and High Discharges. We design our Kaplan Turbines with adjustable Guide Vanes and Runner Blades during operation ensuring optimisation of efficiency at varying head and discharge.

Design Parameters:

Range of Heads:	1 – 40 m
Range of the Runner diameters:	350 – 4 000 mm
Range of power per 1 unit:	50 – 25 000 kW

Vertical Kaplan Turbine

is applied for Low Heads and High Discharges. We design our Kaplan Turbines with adjustable Guide Vanes and Runner Blades during operation ensuring optimisation of efficiency at varying head and discharge.

Design Parameters:

Range of Heads:	1 – 45 m
Range of the Runner diameters:	350 – 6 000 mm
Range of power per 1 unit:	50 – 25 000 kW

HPP LOBKOVICE, Czech Republic

Two Units Vertical Kaplan Turbines

Installed 2016

Head: 2,5 m

Runner

diameter:

Power max: 2 x 1 200 kW

HPP MIŘEJOVICE, Czech Republic

Four Units Vertical Kaplan Turbines Installed 2010

Head: 3,71 m

Runner diameter: 2 850 mm

Power max: 4 x 1 320 kW

HPP GUMATI, Georgia

One Unit Vertical Kaplan Turbine

Installed 2010

Head: 26 m

Runner diameter: 3 000 mm

Power max: 13 MW

SHPP KNISLINGE, Sweden

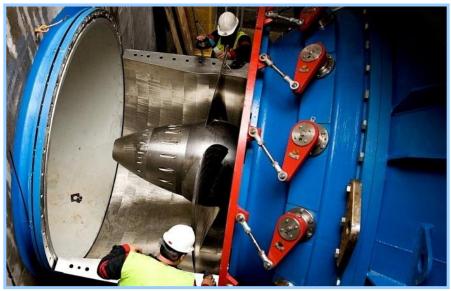
One Unit Straight Flow Kaplan Turbine

Installed 2012

Head: 4,3 m

Runner diameter: 2 100 mm

Power max: 949 kW



SHPP Podtureň, Slovakia

Two Units Straight Flow Kaplan Turbine Installed 2018

Head: 6,5 m

Runner

1 600 mm

diameter:

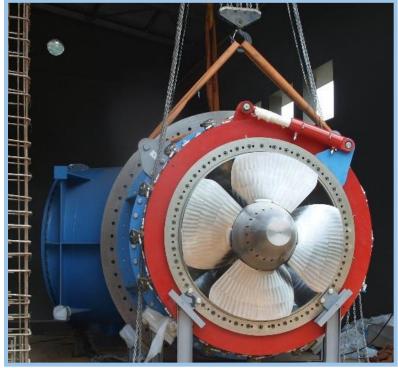
Power max:

2x710 kW

SHPP LAC, Republic of Liberia

Kaplan Z – type Turbine

Installed 2014


Head: Unit 1 = 8,95 m, Unit 2 = 9,37 m

Runner diameter: Unit 1 = 1 750 mm, Unit 2 = 1 100 mm

Power max: Unit 1 = 1 244 kW, Unit 2 = 571 kW

HPP SEVILLA, Philippines

Two Units Vertical Kaplan Turbines Installed 2004

Head: 10 m

Runner diameter: 1 575 mm

Power max: 2 x 1 329 kW

SHEPP SKÄPANÄS, Sweden

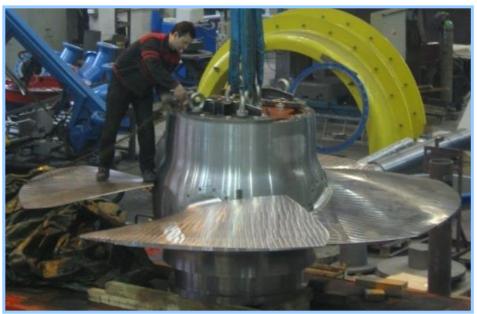
One Unit Vertical Kaplan Turbine Installed 2007

Head: 16,5 m

Runner diameter: 3 050 mm

Power max: 8 860 kW

SHPP TRI CHALOUPKY, Czech Republic


One Unit Vertical Kaplan Turbine Installed 2013

Head: 2,84 m

Runner diameter: 3 900 mm

Power max: 1 200 kW

FRANCIS TURBINES

Francis Turbine

Is applied for middle/high Heads and moderate/high Discharges. We design our Francis Turbines with adjustable Guide Vanes during operation ensuring optimisation of efficiency at varying discharge.

Horizontal Francis Turbine Design Parameters:

Range of Heads:	3 – 250 m
Range of the Runner diameters:	200 – 2 500 mm
Range of power per 1 unit:	20 – 30 000 kW

Vertical Francis Turbine Design Parameters:

Range of Heads:	3 – 250 m
Range of the Runner diameters:	200 – 2 500 mm
Range of power per 1 unit:	20 – 30 000 kW

HPP ATSI, Georgia

One Unit Vertical Francis Turbine

Installed 2014

Head: 45,30 m

Runner

1 900 mm

diameter:

40.000.1344

Power max: 10 629 kW

PLTM CILAKI 1B, Indonesia

Three Units Horizontal Francis Turbines Installed 2017

Head: 79,45 m

Runner

700 mm

diameter: Power max:

3 x 3 403 kW

PLTA PAKKAT, Indonesia

Three Units Horizontal Francis Turbines Installed 2015

Head: 143 m

Runner diameter: 1 020 mm

Power max: 3 x 7 000 kW

SHPP ŘÍMOV, Czech Republic

Two Units Horizontal Francis Turbines Installed 2010

Head: 38 m

Runner Unit 1 = 600 mm, Unit 2 =

diameter: 430mm

Power max: Unit 1 = 780 kW, Unit 2 = 400

kW

SHEPP SAN LUIS, Philippines Two Units Horizontal Francis Turbines

Installed 2004

Head: 95 m

Runner

350 mm

diameter: Power max:

2 x 400 kW

SHEPP DUSLO SALA, Slovakia One Unit Horizontal Francis Turbine

Head: 40 m

Runner diameter: 350 mm

Power max: 124 kW

PELTON TURBINES

Pelton Turbine

Is non-pressure turbine suitable for very high heads and low discharge. Water is supplied by nozzles equiped with adjustable needles and deflectors to the runner buckets.

Horizontal Pelton Turbine

Design Parameters:

Range of Heads:	30 – 1000 m
Range of the Runner diameters:	300 – 2 500 mm
Range of power per 1 unit:	50 – 30 000 kW

Vertical Pelton Turbine

Design Parameters?

Range of Heads:	30 – 1000 m
Range of the Runner diameters:	300 – 2 500 mm
Range of power per 1 unit:	50 – 30 000 kW

HPP CORANI, Bolivia

One Unit Horizontal Pelton Turbine

Installed 2017

Head: 625 m

Runner diameter: 1 620 mm

Power max: 15 450 kW

SHPP FOSSA, Norway

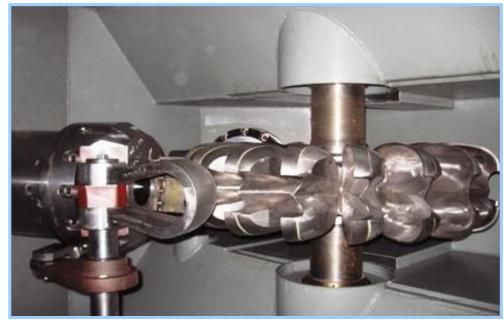
One Unit Horizontal Pelton Turbine Installed 2009

Head: 296 m

Runner diameter:

700 mm

Power max: 1 769 kW



SHPP LIFFJELKRAFT, Norway

Two Units Vertical Pelton Turbines Installed 2006

Head: 95 m

Runner diameter: 520 mm

Power max: 457 kW

HPP SHAORI, Georgia

Two Units Horizontal Pelton Turbines Installed 2009

Head: 478 m

Runner diameter: 1 871 mm

Power max: 10 MW

SHPP BLADID, Norway

One Unit Vertical Pelton Turbine Installed 2006

90 m Head:

Runner diameter: 580 mm

Power max: 565 kW

HYDRO-MECHANICAL EQUIPMENT

We Design and Manufacture Hydro-Mechanical Equipment to Provide Proper and Reliable Operation of Water Turbines and Hydro Power Plants:

- INTAKE TRASH RACKS
- TRASH RAKE MACHINES WITH CHAIN OR HYDRAULIC DRIVES
 - GATES FOR INTAKE
- FLUSHING SLUICE OR DAM LEVEL CONTROL (RADIAL SEGMENT GATES)
 - WEIR FLAPS
 - INLET AND BOTTOM OUTLET VALVES

Our Company is Specialized in Designing and Manufacture of HYDRAULIC GOVERNORS to Control Turbine Guide Vanes (Kaplan, Francis), Runner Blades (Kaplan), Nozzle Needles (Pelton) Inlet Valves and Intake Gates.

Last but not Least we also Design and Manufacture our own Oil-Lubrication Units to Ensure Reliable Lubrication of Sleeve Bearings with Turbine-Generators Units Supplied.

NPP DUKOVANY, Czech Republic

Type of Travelling Trash-Raking

Equipment: Machine

with Telescopic Beam

Installed: 2003, 2004

HPP NECHRANICE, Czech Republic

Type of Equipment:

Radial Segment Gates and Stop Logs

Dimensions:

5 600 mm x 13 000 mm

Installed:

2003

SHP ŠTVANICE, Czech Republic

Type of Equipment:

Stationary Two-Arm

Hydraulic Trash-Raking

Machine

Installed: 2006

SHPP PŘELOUČ , Czech Republic

Type of Equipment:

Travelling Trash-Raking Machine with Telescopic Beam

SHPP NÝRSKO, Czech Republic

Type of Equipment

Equipment 2 pcs Howel-Bunger Valves DN600 PN6

REAHABILITATIONS, OVERHAULS & UP - GRADING

In Order to Ensure Most Efficient and Economical Operation our Company Strojírny Brno, a.s. Provides UP-GRADE of Existing Water Turbines and Other Components of HYDRO POWER PLANTS

Existing Turbines are Completely Replaced for The New Ones or Properly Renovated and Modernized to Achieve Higher Efficiency and Therefore Higher Production.

REAHABILITATIONS, OVERHAULS & UP – GRADING REFERENCES

HPP NOVÉ MLÝNY, Czech Republic

Rehabilitation

Head: 8,9 m


Runner

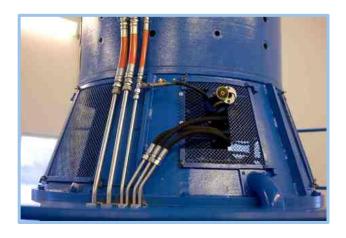
2 400 mm

diameter:

Power max:

2 300 kW


REAHABILITATIONS, OVERHAULS & UP – GRADING REFERENCES


HPP NJURA, Sweden

General Overhaul of Vertical Kaplan Turbine

Runner diameter: 2 200 mm

REAHABILITATIONS, OVERHAULS & UP – GRADING REFERENCES

HPP PASTVINY, Czech Republic

Rehabilitation

Runner diameter: 1 560mm

Head: 28 m

Power max: 2 820 kW

MECHANICAL EQUIPMENT DESIGN PROCESS

Elaboration of Mechanical Part Design Documentation (Autocad)

Elaboration of Water Turbines, Hydraulic Governors and Oil Lubricating Sets Design

Elaboration of Workshop Drawings by 3D Modelling (ProEngineer, Unigraphics)

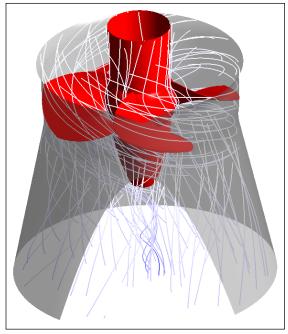
Hydro – Mechanical Machines Strength Calculation Check (Ansys, WorkBench)

Calculation and Preview of Transient Effects of Hydro Power Plant Hydraulic Systems

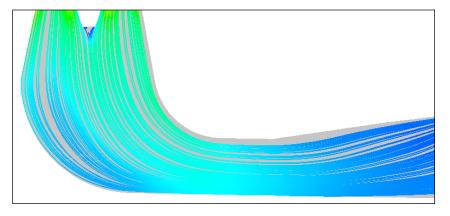
Mathematical Modelling of Hydro Power Plant Regulation Circuits

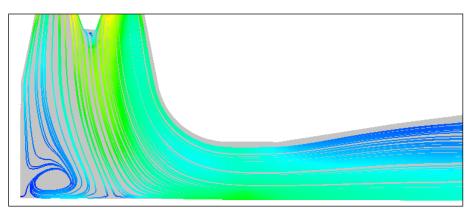
VIRTUAL PROTOTYPE

We use the technique of **virtual prototyping** and **reverse engineering**. This is connected with model experimental verification in hydraulic laboratory.


Virtual prototype is given by 3D model from hydraulic design to construction design and manufacturing.

This enables:


- design of the water machinery parts by means of CFD simulation
- advanced design supported by FEM simulation with feed back to the design
- programming CNC machines.


In this way we optimize a machine and fulfil requirements of a new or refurbished machine.

By means of **virtual prototyping** and **reverse engineering** we are able to evaluate an increase in efficiency and power output of a refurbished turbine already at the phase of an offer.

Kaplan Turbine virtual prototype

Flow in the runner and draft tube

Strojírny Brno, a.s.

Water Turbines & Hydro-Mechanical Equipment

Adress:

Blanenská 1278/55, 664 34 Kuřim,

Czech Republic

Tel.: +420 533 338 400

e-mail: info@strojirnybrno.cz

http://www.strojirnybrno.com

Strojírny Brno, a.s.

Water Turbines & Hydro-Mechanical Equipment

